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The problem of the containment of the trajectories of a differential inclusion in a specified closed set in a maximum time interval
[1-4], which is a problern of optimal control with phase constraints, is considered. Sufficient conditions for optimality are obtained
in the form of 2 maximum principle (cf. [5]). © 1997 Elsevier Science Ltd. All rights reserved.

1. The problem of the containment of the trajectories of the differential inclusion
xeF(x) (1.1)

in a specified set G in a maximum time interval is considered. It is assumed that G is a non-empty closed subset
of R? and that F(x) is a non-empty compact subset of R? for each x € R’

A solution of inclusion (1.1) in a time interval I is understood to be an absolutely continuous functionx(-) : I -
R? such that x'(f) € F(x(t)) almost everywhere in I.

The union of all solutions of inclusion (1.1) which satisfy the initial condition x(0) = x; is denoted by Y(x;).

The quality functional T(xg, x(-)) = sup{t = 0|x(r) € G for all r € [0; ¢] is determined using the specified x; €
G and x(-) € Y(xp).

The problem of survival in the domain G or, what is the same thing, the problem of avoiding encounters with
the terminal set M := R? G for a specified initial state xq € G is formulated in the following manner [1-4]

T(xg, x(-)) = sup, x(*) € Y(xg) (12)
A trajectory x(-) € Y{x,) is said to be optimal in the case of an initial point xy € G if T(xg, x(:)) = T(xg), where
T(xg) =sup{T(xg,z(-Nz(:) € Y(xq)}

The completeness of the set G enables one to associate problem (1.2) with optimal control problems with phase
constraints. Sufficient conditions for optimality in the case of problem (1.2) are presented below on the basis of
results which have been previously obtained [S].

2. We introduce the many-valued mapping Z(-, -) : R? x R? — 2%, defined by the formula
Z(p, x)={zl(z, y-x) < C(F(x), p)—c(F(y), p) forall ye G},
where c(X, ) = sup {(y,y)]y € X} is a support function of the set X C R”.

Definition. The function p(-): [0, T] — R? is called a conjugate function without a singularity for a trajectory x(-)
€ Y(xp) in the time interval [0; T] if the function p(-) satisfies the following conditions: (a) it is continuous from
the left, (b) it can be represented as the sum of an absolutely continuous function and a step function where all
the points of the step 1;, i € E(p(-)), E(p()) C N lie in the interval (0; T), and (c) the inclusion p(f) € Z(p(t), x(t))
holds almost everywhere in the interval [0; T].

Theorem 1. Suppose that the quantity T: = T(xg, x()) is finite for o € G and x(-) € Y(xo). Next, suppose that a
time ¢. € (0; 7] and a conjugate function p(-) without a singularity exist for x(-) in the interval [0; T.] such that:
1. the condition for a maximum

(x(0), p()) = c(F(x(2)), p(1)) 21)
is satisfied for almost all ¢ € [0; t.]; ) '
2. the step condition (x(t;), p’) = ¢(G, p’) is satisfied for all i € E(p(-)), where p’ = p(t; + 0) - p(1; - 0);
3. the inequality T(yp) < T—t. holds for all y, € G N TI(p(t+), x(z+)), II(p, x) = {x|(z —x, p) < O}
tPriki, Mat. Mekh. Vol. 61, No. 3, pp. 535-537, 1997.

519



520 A. Z. Fazylov

Then, x(-) is the optimal trajectory of problem (1.2) for the initial point xo.

Proof. Suppose that xg, x(-), T, p(-), t. satisfy all the conditions of the theorem.
We assume that a y(-) € Y(x,) exists such that T(xg, y(-)) > t+. Otherwise, the proof of the theorem is obvious. We
consider the function £(f) = (p(1), y(¢f) - x(t)) in the interval [0; z.]. Since y(¢) € G for all 1 € [0; #.], then, by making
use of conditions 1 and 2 and the definition of a conjugate function, we have, by analogy with what has been described

earlier [5]
k)= jE,(r)dr+ Y [E(t; +0)-E(T; —0)]<j¢(r)dr+

i<t

+ X [t p)- c(Gp)1<J O(r)dr<0, ®(r)=(y(r), p(r))=c(F(y(r)), p(r))

IT<I

for all ¢ € [0; t.]. It follows from this, in particular, that y(t.) € G N TI(p(t+), x(t)). Consequently, according to

condition 3, we have T(xg, y()) <t + T(y(t+)) < T(xg, ¥(*)).
The theorem is proved.

Theorem 2. Suppose that the quantity T: = T{(xg, x(-)) is finite for xy € G and x(-) € Y(xp), and further suppose
that a conjugate function p(-) without a singularity exists for x(-) in the interval [0; T] such that:

1. x(-) is the unique solution of the inclusion (1.1) which belongs to ¥(xy) and satisfied the condition for a maximum
(2.1) almost everywhere in the interval [0; T];

2. (1(%), P) = (G, p) for alli € E(p());

3. int N(p(T), x(T)) c M.
Then, x(-) is the unique optimal trajectory of problem (1.2) corresponding to the initial point x;.

Proof. Assume the opposite is true. Then, a trajectory y(-) € Y(x,) exists such that
T(xg, y(-)) = Tixg, x(-)) 22)

where y([0; 7]) # x([0 7).
As in the proof of Theorem 1, a function £(f), 0 < ¢ < T is considered and it is established that

&)= I O(r)dr
0

According to condition 1, we have from this that £(T) < 0. Consequently, by virtue of condition 3
WMD) eimI(p(T), x(THcM
which contradicts (2.2). The theorem is proved.
3. Example. Suppose that G = {x € R?|(x, m) = 0} and that the differential inclusion (1.1) is specified by the
controlled system

0 1
x=Ax+u, xeR? ueP, A=[1 O]

where m = (0, 1)’, and P is an intexrval with vertices at the points (1, 0) and (-2, —-3)’ (transposition is denoted by
a prime).

Suppose that xy = (-11/4, 4) and that x(-) is the solution of the Cauchy problem x* = Ax + u(t), x(0) = x, in
which u(f) = (-2, -3)’ when ¢ € [0; ®)u(f) = (1/2exp(t — ), 1/2exp(t — x)-1") when f € [x; t) and u(r) = (1, 0)’ when
T <t < +oo, where T = n + In (4 — 2v2). It can be verified that T: = T(x, x(-)) = T + n/4. Moreover, x(f) € int G
when ¢ € [0; ©) U (t; T) x(£) € Fr G in the interval [x; 1].

We put p(t) = exp ((n - )A)(-1, 1)’ when 0 <t < wand p(f) = exp (n - £)(-1, 1)’ whenr <t < 1.

It can be shown that all the conditions of Theorem 1 are satisfied with respect to xg, x(-), p(-) - = 7. In this case,
the fact that condition 3 is satisfied can be checked using the alternating Pontryagin integral [6]. Hence, x(-) is the
optimal trajectory for an initial point x,.
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