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The problem of the containment of the trajectories of a differential inclusion in a specified closed set in a nuvrimum time interval 
[ 1-4], which is a probleta of optimal control with phase constraints, is considered. Sufficient conditions for optimality are obtained 
in the form of ammdmum principle (ef. [5]). © 1997 Elsevier Science Ltd. All rights reserved. 

1. The problem of the containment of the trajectories of  the differential inclusion 

¢ F(x) (1.1) 

in a specified set G in a maximum time interval is considered. It is assumed that G is a non-empty dosed subset 
of  R d and that F(x) is a non-empty compact subset of R d for each x ~ ~ .  

A solution of inclusion (1.1) in a time interval I is understood to be an absolutely continuous function x(.) : I --¢ 
such that x'(t) ¢ F(x(t)) almost everywhere in L 

The union of all solutions of inclusion (1.1) which satisfy the initial condition x(0) = x0 is denoted by Y(xo). 
The quality functional T(x0, x(.)) = sup{t >~ 0 Ix(r) ¢ G for all r e [0; t] is determined using the specified x0 ¢ 

G andx(.) ¢ r(xo). 
The problem of survival in the domain G or, what is the same thing, the problem of avoiding encounters with 

the terminal set M := R d G for a specified initial state x0 e G is formulated in the following manner [1-4] 

T(x0, x(')) ~ sup, x(') e Y(x O) (1.2) 

A trajectory x(.) ¢ Y(~0) is said to be optimal in the case of an initial point x 0 ¢ G if T(x 0, x(.)) = T(x0), where 

T(x O) = sup {T(x 0, z(.))l z(.) ¢ Y(x0)} 

The completeness of  the set G enables one to associate problem (1.2) with optimal control problems with phase 
constraints. Sufficient conditions for optimality in the case of problem (1.2) are presented below on the basis of 
results which have been previously obtained [5]. 

2. We introduce the many-valued mapping Z(., .) : ~ x K ~ ~ 2 ~ ,  defined by the formula 

Z ( p , x ) = l z l ( z , y - x ) < ~ C ( F ( x ) , p ) - c ( F ( y ) , p )  f~rall y e  G}, 

where cO(, ¥)  = sup {(~/,y)[y ¢ x}  is a support function of the se tX C R a. 

Definition. The functionp(-): [0, T] --~ R d is called a conjugate function without a singularity for a trajectoryx(-) 
Y(x0) in the time interval [0; T] if the ftmctionp(-) satisfies the following conditions: (a) it is continuous from 

the left, C o) it can be represented as the sum of an absolutely continuous function and a step function where all 
the points of  the step xi, i ¢ E(p(-)), E(p(.)) C N lie in the interval (0; T), and (c) the inclusionp(t) ~ Z(p(t),x(t)) 
holds almost everywhere in the interval [0; 7]. 

Theorem 1. Suppose that the quantity T: = T(xo, x(.)) is finite for x0 ~ G andx(.) ~ Y(xo). Next, suppose that a 
time t, ~ (0; t] and a conjugate functionp(-) without a singularity exist for x(-) in the interval [0; T,] such that: 

1. the condition for a maximum 

(x(t), p(t)) = c( F(x(t)), p(t)) (2.1) 

is satisfied for almost all t ¢ [0;.t.]; 
2. the step condition (x(xi),l¢) = c(G,p  i) is satisfied for all i ¢ E(p(.)), wberep i = p(xi + O) -p(xi  - 0); 
3. the inequality T(vo) <~ T - t .  holds for ally0 E G CI II(p(t.),x(t.)), n (p ,x )  = {xl(z - x , p )  <<. 0}. 

tPrikl. Mat. MekK Voi. 61, No. 3, pp. 535--537, 1997. 

519 



520 A . Z .  Fazylov 

Then, x(-) is the optimal trajectory of problem (1.2) for the initial point x~ 

Proof. Suppose that x0, x(.), T,p(.), t. satisfy all the conditions of the theorem. 
We assume that ay(-) • Y(xo) e~sts such that T(x0,y(.)) > t.. Otherwise, the proof of the theorem is obvious. We 
consider the fimction ~(t) = (p(t),y(t) -x( t))  in the interval [13; t,]. Sincey(t) • G for all t • [0; t.], then, by making 
use of conditions 1 and 2 and the definition of a conjugate function, we have, by analogy with what has been descn'bed 
earlier [5 ]  

t t 

0 i:xi<t 0 

t 
+ ~ [(y(Xi), pi ) -c (G,  pi)] ~ ~ O(r)dr <~ O, 

i :x i< t  0 

O(r)  = (y(r), p(r))-c(F(y(r)) ,  p(r)) 

for all t • [0; t.]. It follows from this, in particular, that y(t.) • G n II(p(t.), x(t.)). Consequently, according to 
condition 3,we have T(x~y(.)) ~< t. + T(y(t.)) ~< T(x~x(-)). 

The theorem is proved. 

Theorem 2. Suppose that the quantity T" = T(x~x(.)) is finite forx0 • G andx(-) • Y(x0), and further suppose 
that a conjugate ftmctionp(-) without a singularity exists for x(-) in the interval [0; T] such that: 

1. x(-) is the unique solution of the inclusion ( 1.1 ) which belongs to Y(x0) and satisfied the condition for a maximum 
(2.1) almost everywhere in the interval [0; T]; 

2. (x(xi),p i) -- c(G,/~) for all i • E(p(.)); 
3. int II(p(T), x(T)) c M. 
Then, x(.) is the unique optimal trajectory of problem (1.2) corresponding to the initial point x~ 

Proof. Assume the opposite is true. Then, a trajectoryy(.) • Y(x0) exists such that 

T(Xo, y(-)) ~> T(x 0, x(.)) (2.2) 

wherey([0; T]) ~e x([0 T]). 
As in the proof of Theorem 1, a function ~(t), 0 ~< t ~< T is considered and it is established that 

T 

~(T) <~ f ~(r)dr 
o 

According to condition 1, we have from this that ~(T) < 0. Consequently, by virtue of condition 3 

y(T) ~ int H(p(T), x(T)) ~ M 

which contradicts (2.2). The theorem is proved. 

3. Examp/e. Suppose that G = {x ~ R2[ (x, m) >1 0} and that the differential inclusion (1.1) is specified by the 
controlled system 

[0 '01 x=Ax+u ,  XER 2, uEP,  A= -1 

where m = (0, 1)', and P is an interval with vertices at the points (1, 0)' and (-2, -3) '  (transposition is denoted by 
a prime). 

Suppose that x0 ffi (-11/4, 4) and that x(-) is the solution of the Cauchy problem x" = Ax + u(t), x(O) = Xo in 
which u(t) = (-2, -3) '  when t e [0; ~)u(t) = (1/2exp(t- 7r), 1/2exp(t- n)--l') when t • [x; ~) and u(t) = (1, 0)' when 
x ~< t < +.o, where x = ~ + In (4 - 2~/2). It can be verified that T: = T(xo, x(.)) -- x + n/4. Moreover, x(t) • int G 
when t • [0; it) U (x ; / )  x(t) • Fr G in the interval [~; ~]. 

We putp(t)  = exp (0t - t)A)(-1, 1)' when 0 ~< t < ~ andp(t)  = exp (g - t)(-1, 1)' when x <~ t ~< x. 
It can be shown that all the conditions of Theorem I are satisfied with respect to x0, x(.),p(.) t, = x. In this case, 

the fact that eondttion 3 is satisfied can be checked using the alternating Pontryagin integral [6]. Hence, x(.) is the 
optimal trajectory for an initial point x0. 
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